
(Refer Slide Time: 19:48)

So, first let us take an example called 𝐴𝐷𝐷 𝑅1, 𝑀 that is you are taking the memory location

value 𝑅1 dumping it to 𝑅1 after adding it to whatever the content in 𝑅1 if you look forget about

last class we have discussed that these are the series of control instructions, what are the signals

involved? Program counter in, program counter out, 𝑍𝑖𝑛, MFC all the signals whichever we are

listed here are actually utilized for this micro-instruction, sorry; the micro-instructions which

will be involved in this macro instructions. So, they are all will be generated.

So, now, first we will say if we remember that first was program counter out that is the 𝑃𝐶

value will be fed to the memory address register and then you will make it select zero, Add,

𝑍𝑖𝑛. This part corresponds to incrementing of the value of 𝑃𝐶. So, whenever I say 𝑃𝐶 = 𝑍𝑜𝑢𝑡;

that means, the 𝑃𝐶 is incremented, sorry this way. So, whenever 𝑍𝑜𝑢𝑡 means the value of

incremented value of 𝑃𝐶 will be dumped into 𝑃𝐶 output, because 𝑍 output actually was storing

the value of accumulated sorry the value of the ALU which was added the value of program

counter plus the constant.

Now, we have to put it in 𝑃𝐶 that now 𝑃𝐶 is updated. Now, we have to it’s important we are

waiting for an external signal this is an external signal. So, this is an external signal. So, we

have to wait for the external signal only once when it is ready in stage three basically what you

can do? The instruction which is now in 𝑀𝐷𝑅 can be loaded to register in and similarly you

can go ahead. So, again there is a external signal and all others are internal signals like 𝑃𝐶𝑜𝑢𝑡,

640

𝑀𝐴𝑅𝑖𝑛, read they are all signals which are generated and here we are waiting for something

which is again a condition which I am depending on which comes from an external one.

So, all these like 𝑃𝐶𝑜𝑢𝑡, 𝑀𝐴𝑅𝑖𝑛, 𝑟𝑒𝑎𝑑, 𝑠𝑒𝑙𝑒𝑐𝑡 0, 𝐴𝐷𝐷, 𝑍𝑖𝑛 they are the control signals which

you have to generate and then 𝑊𝐹𝑀𝐶 is something on which you have to wait till you can go

to the third stage. Similarly from the 5th stage to go to the 6th stage basically you have to again

wait for the 𝑊𝐹𝑀𝐶; that means, this round this special this two are basically inputs which on

which the movement of the final state machine will depend and all other signals are basically

being generated which has to be generated by the your hardware control unit which in this case

is a finite state machine. Now, we will first basically see the circuit and then we will go for the

discussion.

(Refer Slide Time: 22:03)

So, let us assume that this 𝐴𝑑𝑑 𝑅1, 𝑀 whatever may be the opcode for this corresponds to first

instruction. So, what is going to happen 𝐼𝑁𝑆1 will be 1; that in the decoder the first line will be

1 which corresponds to this instruction which is the first instructions, so whenever the 𝐼𝑁𝑆 is

1, because it’s a decoder. So, only one line will be 1. So, only this finite state machine will be

invoked, if you look at the initial stage it’s input is 𝐼𝑁𝑆1.

So, only if the value of 𝐼𝑁𝑆1 = 1, then this machine will invoke and you know there is already

a decoder. So, based on the input of the opcode only one of this machines will be invoked like

there will be another machine for 𝐼𝑁𝑆2. Another machine for 𝐼𝑁𝑆3 … up to 𝐼𝑁𝑆𝑚, so based on

641

which instruction is in the instruction decoder the opcode it will be correspondingly invoking

only one finite state machine, because correspondingly this input is equal to 1.

Now, next what let me zoom this part so it will be clear. So, next is what I am doing? So, you

are invoking this finite state machine based on the in which based on the output of the

instruction decoder 𝐼𝑁𝑆1 = 1. Next what? Next I am going to go to state 1. So, what is the

output? Initial state is there from state 0 to state 1 what happens basically, you should know

that now I should be in state 𝑇1 that is from 0 next state has come that is counter has now

become one. Then what are the outs if you remember there is only one thing over here after

initial state basically you need not depend on any other input only thing is that state 1

corresponds to the fact that at present the instruction is 𝐼𝑁𝑆1 that is 𝐴𝐷𝐷 𝑅1, 𝑀 register to

memory. Then next is nothing just you need to wait till 𝑇1 comes, 𝑇1 comes means that is

sequence counter has now become 1.

So, what is that now after that there is no other input required only time has passed the clock

has come that from stage 0 to stage 1 you can go and what are the signals out

𝑃𝐶𝑜𝑢𝑡, 𝑀𝐴𝑅𝑖𝑛, 𝑟𝑒𝑎𝑑 1, 𝑠𝑒𝑙𝑒𝑐𝑡 0, 𝐴𝐷𝐷 1, 𝑍𝑖𝑛 1. So, all these signals will be correspondingly

generated at this state and all other signals which are not shown like 𝑀𝐴𝑅𝑖𝑛 is 1. So, what

about 𝑀𝐴𝑅𝑜𝑢𝑡 it will be equal to 0 like 𝑃𝐶𝑜𝑢𝑡 = 1. So, what about 𝑃𝐶_𝑖𝑛 it will be 0. So,

whatever I have not shown here are made 0 now it is important. So, now, in this case you have

said that I want to read the memory in the memory address register you have given the value

of 𝑃𝐶; that means, you are going to fetch the instruction.

Second state is interesting second state is interesting basically. So, when I am in state one again

you are waiting till you go to the second state that is second clock pulse then the counter has

become two. Not only here you have to again wait here for another external symbol that is

𝑊𝐹𝑀𝐶 that 𝑀𝐹𝐶 you have to wait this is another signal which will be coming from the

memory to the bus it was going to tell that now the memory has been read everything is fine

now you can go ahead. Only after this you can go to the next state. So, what is the next state;

you are saying that 𝑃𝐶𝑖𝑛 = 1 and 𝑍𝑜𝑢𝑡 = 1 that is you are going to dump the value of program

counter with an updated value from 𝑍 which is nothing but the constant value of ALU, but

before initially there is only one input which we will be depending on that is your clock count

that is state one, here you are depending on two that is clock counter as well as you are waiting

till the memory is ready.

642

So, whenever the memory is ready you can go to the next state S2, there is nothing else you to

depend on just the timer; because already the memory signal has been ready in the previous

state just you dump the value of memory data register to the instruction register. After that just

the sequence because there is no if then else condition you did not wait for any memory read

here. So, the memory data register out; that is basically instruction has been now loaded to the

instruction register.

For state three nothing you have to do just you have to wait for the next clock pulse which will

make the state equal to 4. Here instruction register out will go to the memory address register

in, because you have to fetch another operand from the memory if you remember your

instruction is 𝐴𝑑𝑑 𝑅1, 𝑀 the next instruction is available in the memory location. So, what you

are going to do instruction register out that is m in the instruction register is dumped into the

memory address register and you are making the register mode as 1.

So, these are the control signals which will be generated all other not mentioned like memory

out, 𝑅𝑖𝑛 they are all zeros then again I go sequentially to the next state, here also I do not need

to depend on anything else except it’s important over here I have given a read signal to the

memory. So, I cannot only depend on the input. So, only input here is 𝑇5; that is state 5 is going

to come the counter is 5, I cannot depend only on that here again I have to wait till the memory

gives a green signal that I have done you can read it.

So, whenever it says 𝑀𝐹𝐶; that means, I am done. So, then you can go for here actually

𝑀𝐷𝑅𝑖𝑛 is 1; that means, you are going to generate the signal that I want to read the memory;

because till here it is memory address you have given the value of the register value 𝑀 and you

are saying 𝑟𝑒𝑎𝑑 = 1. So, you have set the the memory in a read mode. So, this one says that

memory is being read, a green signal has been there. Then only you can give the corresponding

signals like here already 𝑀𝐹𝐶 has been 1 right, 𝑀𝐷𝑅𝑖𝑛 means you are going to get the value

of the memory into memory address register, but now you cannot read here, because you cannot

read at this at this stage you cannot read basically the value of 𝑀𝐷𝑅, because I am waiting for

the memory location to be done. Here I am giving a read signal, but when I am going to state

six; that means, already this has been over long back. So, I can go for 𝑀𝐷𝑅𝑜𝑢𝑡 = 1 and all

other similar procedure like this signal has been done.

So, if you remember for all other states, similarly I can complete all the sequences of this state

machine design like for 6 this is the state 6 that counter is 6. I will generate the corresponding

643

control instruction 7, I will generate the control signals correspondingly 8; I will generate the

corresponding signals correspondingly. Finally, 𝐸𝑁𝐷 = 1 means you have to stop this set of

micro-instructions and the macro instruction is over.

So, what is to be emphasized it’s very easy to understand only some clocks are there first is

this machine is invoked that is the initial state condition enabling is 𝐼𝑁𝑆1 that is based on the

opcode only when the signal is one you can go to the corresponding state machine. If there are

m instructions m such state machines will be there and based only on the output of the

instruction register via the decoder you can invoke that corresponding state machine.

Now, for all cases generally if you do not wait want to wait for any kind of an external input

like; your condition flags or your memory values output of the memory that is memory is ready

or there is some signals like you want to wait that if the flag is 0 or flag is 1. So, if no such

conditions are there you just need to wait for the time stage 1, stage 2, stage 3 these are

generated by the clock and the FSM counter, go to stage one and generate all the corresponding

signals which are required to do that only here like whenever you have given a read signal to

the memory.

So, you have to wait till the memory says that I am ready. So, in that case the input from this

state to this state the transition will depend on two inputs one is the state and one is the external

signal and then you generate the corresponding signals like on this case it will be similar, but

here again I have to wait for the memory to be ready, because here I have given a memory read

this is a memory read state that 𝑇4 and you are going for 𝐼𝑅𝑜𝑢𝑡 that is the instruction register

you want to read from the operand from the memory location 𝑀.

So, in the memory register address register you are giving the value 𝑀 and you want to read it.

So, at least you have to wait for some amount of time till you can get the value of memory data

out to your some kind of the another operand 𝑦 where it will be stored. So, this ready can

happen only when if the 𝑀𝐹𝐶 is ready. So, only in that way it can be done ok. So, in this way

you can explain the whole thing. So, if there are 6, 7, 8 are just sequential part and then finally,

you are going to generate the 𝐸𝑁𝐷 out of it.

So, this is the finite state machine corresponding to the corresponding to the set of macro micro-

instructions corresponding to the macro instruction 𝑅1, 𝑀. That is you first write down these

control steps control signals steps then you find out what are the inputs. There are two inputs

644

only here 𝑊𝑀𝐹𝐶; 𝑊𝑀𝐹𝐶 and all others are signals to be generated and of course, 1, 2, 3, 4,

5, 6, 7, 8 are the sequence numbers. So, you have inputs like sequence number as well as

𝑊𝐹𝑀𝐶.

So, these are the two inputs and for all other cases you have to generate. So, similarly you can

map this to the finite state machine, I have shown you and then you have to just go for finite

state machine base synthesis and your job is done how to generate a finite state machine from

a may be the finite state machine design how you can generate in terms of gates and flip flops

is just a simple digital design fundamental which you can read and go back and read your

second semester textbooks this is what is written in written in the language you can read

through the slide.

(Refer Slide Time: 30:54)

Basically and you will get a very clear idea like say in control step one the values are this 1.

So, you have to generate these values directly and all other signal values are 0, which I have

already told you at 𝑇2 you have to wait for the external signal 𝑀𝐹𝐶 to be 1. So, basically there

are two inputs for the second stage; that is your clock counter stage counter as well as the signal

from the memory and then you generate the 𝑃𝐶 = 1. Similarly in this way you can generate

the whole circuit whole finite state machine and then you can synthesize this right.

645

(Refer Slide Time: 31:21)

This is this is about basically your state generation in state one, basically you have to you have

to check whether the 𝑇1 that is state 1 is equal to 1. So, that is this slide is basically saying that

from one state to another state the transition depends always on something called the state

counter that is 𝑇1, 𝑇2 𝑇3; that is the states that it will depends on state counter that I can go from

state 1 to state 2; only if the state variables have been incremented this is just a finite state

machine based implementation.

So, whenever you want to generate implement a finite state machine you remember that always

the there are you have to increment the states like 000, 001, 101 if you generate the forward

counter. So, that that only you can translate into a sequential machine in states will go through

this is just a simple digital design fundamental. So, basically this state slide is showing that for

all the cases one primary input for this hardwired control is the state counter 𝑇1, 𝑇2, 𝑇3 they are

nothing, but the state variable values 0, 1, 2, 3, 4, 5, 6 along with that sometimes you will have

extra inputs which in this case the output of the memory sometimes it can be flag register values

also ok.

So, now basically you are going to as I have told you we are also see basically how a flag

register can be an input. Till now the last instruction was a simple non control based

implementation just a flow, but here we are going to see two type of instruction in which case

its an unconditional branch and one will say the conditional jump. So, conditional jump actually

646

the corresponding instruction we will have another input which will come from the flag register

so that you can get a basic idea.

(Refer Slide Time: 32:56)

So, jump to 𝑀 as you have already seen these are the control signals involved there is nothing

much to discuss, you just look at the other last previous unit then you can get through what are

the signals to be generated. So, these are all the signals to be given as output this is 1 input we

have to wait for from the memory and that’s it and all others are signals which has to be

generated right or as the output signal. So, what will be the step? So, again importantly this is

assume that jump 𝑀 is signal number instruction number 2.

So, jump unconditional to 𝑀 in signal number 2; so, only when the opcode corresponding to

jump 𝑀 comes; then only this 𝐼𝑁𝑆2 will be equal to 1. So, only the initial state input value will

be satisfied only for this finite state machine for all instruction there are different different finite

state machines, but whenever you are going to give jump 𝑀 in the instruction register the

corresponding opcode will actually satisfy only the input condition for this finite state machine.

So, this will be input and it will not satisfy the initial condition state for the previous instruction

or any other instruction in that matter.

So, only this instruction will be activated. So, again as I told you stage 1 so, counter is one you

generate all the signals and go to state 1. State 2 basically similar two is the input and you have

to wait for the memory to be ready, because you are going to read the memory value as the

instruction is in the first stage. So, whenever it is ready then only you can actually start the

647

memory read. So, it is generating the signals and the third stage, because in this stage you have

already verified that the memory is ready. So, you are saying that 𝑀𝐷𝑅 = 𝑅𝑖𝑛. So, this state

says that memory is ready. So, you can actually dump the value of the memory instruction.

𝑇4 what basically as you see the jump unconditional. So, you have to take the offset value and

actually you have to put it in 𝑍𝑖𝑛 already we have seen. So, in this case you have to take the

value of offset and 𝑠𝑒𝑙𝑒𝑐𝑡 1 𝑎𝑑𝑑 1, 𝑍𝑖𝑛; that means, what you are going to do you are going to

get the updated value of 𝑃𝐶 you are going to add with the offset value of 𝐼𝑅 and then you will

actually we are going to get the new value of the program counter that is the jump address and

you will dump that value to 𝑃𝐶 and your job is done.

So, basically, but here there is no condition, so whatever maybe state there is no input required

from any flag register just you have to take the value of offset value of 𝐼𝑅 you have to add it

with the program counter value which is already saved in if you look at it. So, the 𝑃𝐶𝑜𝑢𝑡 and

𝑍𝑖𝑛 and of course which is saved in some temporary register in that manner you have to just

get the value added and it will be the new value of the 𝑃𝐶 so. In fact, there is nothing to depend

upon. So, we just say that 𝐼𝑅𝑜𝑢𝑡 that is instruction.

Of course, the offset is taken as the output 𝑠𝑒𝑙𝑒𝑐𝑡 𝑜𝑛𝑒, 𝑎𝑑𝑑 𝑜𝑛𝑒, 𝑍𝑖𝑛 if you remember it means

that I am selecting the 𝑌 variable not the constant variable to be added to the there is an updated

value of 𝑃𝐶 which will be in the data bus which will be present in the bus and the output will

be saved in 𝑍𝑖𝑛 that is actually equal to 𝑃𝐶 plus offset value of 𝑃𝐶 which is nothing, but equal

to jump the variable 𝑀 will come to the 𝑃𝐶 the value of 𝑀 will come to the 𝑃𝐶 that is state 4.

So, once it is the condition we will come over here then actually a 𝑍𝑜𝑢𝑡, 𝑃𝐶𝑖𝑛; that means, there

is a 𝑍𝑜𝑢𝑡 here is nothing but the M which will be dumped to the program counter and it’s end,

that means in this case we are just updating the value of 𝑃𝐶 to 𝑀 it was jump 𝑀. So, already

we have seen that there will be just a sequence of step, because of the unconditional instruction.

So, only everywhere we will depend on just the state that is whenever the counter will be four

you can go over here and so, forth.

And it will be basically end the machine it is a very simple explanation which we have done

to, but to appreciate the fact that when there is another input on which your state machine

transition will depend will be clear when you are taking a conditional jump which we are now

648

going to do, again you can just go through the slide which I have just told you that what will

happen after which state.

(Refer Slide Time: 37:00)

Like for example in jump state this is the initial condition which is enabled, at 𝑇1 state one then

you are going to generate all these signals, at 𝑇2 after the second state counter is one you are

going to generate the whole signal and then the whole design can be very easily completed.

(Refer Slide Time: 37:18)

649

Most interestingly now whenever I tell you that the input to the finite state machine will depend

on state as well as some external inputs like your memory or your register flags then we have

to take a conditional jump. So, this is a conditional jump, jump on 𝑍 to 𝑀. So, therefore if you

see all other steps will be similar. Here we are saying that the offset of IR select and everything,

but if flag value is not equal to 0 then end, if flag equal to 0 then you update the value of 0 𝑃𝐶

with 𝑀, but if the flag variable is not set, then you go over here and you don’t have to do

basically anything or if the flag value is 0, then you have to update this that 𝑍𝑜𝑢𝑡 𝑃𝐶𝑖𝑛 means

the update value or 𝑃𝐶 that is 𝑀 will be dumped to 𝑃𝐶.

So, the program counter will have the value 𝑀 and we will start executing from instruction

which is present in memory location 𝑀, but if the flag value is not 0. Now from there itself we

will come out and the 𝑃𝐶 will go as forward without having dumped the value of 𝑀 into the

𝑃𝐶. So, 𝑃𝐶 will be 𝑃𝐶 plus increment and it will keep on doing it. So, here this will be very

interesting to see how we will do it. So, again 𝐼𝑁𝑆3. So, you are assuming that jump on 0 to 𝑀

is instruction 3.

So, only this line will be one. So, only this finite state machine will be invoked. So in fact, you

can see that for each instruction there is a separate finite state machine which will be invoked.

So, you can understand that if n finite state machines will be there which will be hardcoded.

So, it will take some more area, but in fact it will be extremely fast; because here you are mainly

depending on the inputs which is nothing but your states. If have lot of or lot of instructions

you could have optimized in this way that many of for many of the cases the initial states up to

first one two three states are similar then only it is deviating.

So, I can make a more complicated type of finite state machine say for instruction 1, 2 and 3,

this is the finite state machine which is synthesized; because the first three are similar.

Depending on the input I can then bifurcate into some different branches then again I can do

it. So, of course, we will have an optimized hardware implementation because may be the first

three states are similar for everybody last two states are similar for everybody. So, I could have

made a merged machine and then keep on branching and joining which will give me a better

optimized machine, but it will be slower because you will be now depending on the state as

well as type of instructions and again you will be joining and merging. So, this hardware size

will be a bit small, but it will be a basically more slower design.

650

So, if I have a full flexibility then it will become a program that is your micro program based

controller which we will see later, but for the time being we are actually giving dedicated

hardware for each instruction and it is the fastest way of implementation. So, in this case

𝐼𝑁𝑆3 is enabled; that means, your instruction at present is jump on 0 to this 1 to some location,

𝑇1 will be similar stage one you are going to generate all the signals as output, 𝑇2 control state

is two you have to wait till the memory is ready. So, that you can get the updated value of

program counter from 𝑍_𝑜𝑢𝑡, of course you are storing the value of program count in the

temporary variable Y, because you have to add 𝑃𝐶 to your offset value 𝑀𝐷𝑅 this is very

similar, instruction you are dumping to instruction register from the memory data register this

is instruction fetch.

Now, important now we are saying that if 𝑇4 of course, if zero flag is set. So, now, you see the

inputs are 2, 1 is the state another one is your zero flag. So, this is an input which is coming

from basically the external register sorry the register input that is the flag register this is an

external input that is from the memory. So, if this state depends on two inputs, this state depends

on only one input that is your state count, here also it depends on two input that is state as well

as zero flag. So if the zero flag is set then what you do? You take the offset you add it to your

𝑌 and basically dump the output to 𝑍 1.

So, 𝑍𝑖𝑛 that is actually now your Z is actually having the value of 𝑀 which is offset plus the

program counter, all these details we have seen in the last unit. So, now, 𝑍 is actually having

the updated value of. So, if 0 is set you update the value of 𝑃𝐶 with 𝑀, and then you come over

here and then what you do you dump the value of 𝑍 to program count and End and End. So,

basically 𝑍𝑜𝑢𝑡 basically 𝑍 is having the value of 𝑀 you dump to 𝑃𝐶 that is my 𝑃𝐶_𝑖𝑛 = 1.

So, now, the 𝑃𝐶 will be having the 𝑀 and you will start executing from 𝑀, but there is another

choice if the flag is not 0. So, there is another instruction another branch over here same for the

same state if your counter has become 4 and if the zero flag is not set then what you do you

just generate the end signal and it will actually come to the final step and look over. So, the

micro-instructions will be stopped.

So, this shows a very nice example that if there is a conditional jump then you can have a state

where there will be a bifurcation. So, here there are two types of inputs state input as well as

the inputs from the flags and here then again two inputs one is the flag and one is an external

651

input which is basically your coming from your memory that memory read has been done. So,

this shows a hardwired control unit generation for a conditional jump.

So, from this discussion you can see that it is very simple to design the finite state machine

which corresponds to different instructions, for each instruction basically you generate this

sequence of inputs which will always be some states as well as the control signals which are to

be output and for some particular cases you have to also depend on some external inputs like

from the memory; if there are conditional instruction you have to look at the flag registers

etcetera.

And then just you have to go for a finite state machine based synthesis which is a standard

digital design fundamental and you can make a hardware out of it which will be in terms of

your flip flops and gates and it will be done, but only thing is that it takes more area, because

for each instruction you will have a different finite state machine if I want to merge and make

an optimization of it which will be slightly having lesser area, but it will be slightly slower and

we don’t try to do a trade-off here.

So, what I am trying to do? whenever you have a hardware based control we dedicatedly give

for each instruction a finite state machine extremely fast, but you can just see that the area

overhead is higher as well as the very non flexible design, that is for a given macro instruction

there are the micro instructions and the hard this finite state machines are basically hardcoded.

So, again if you just look at it whatever I have explained I have given you in the thesis I will

give you this description in this slide you can read through it like that is the initial state is not

the enabling condition is this, in 𝑇1 state these are the signals and so, forth and 𝑇2 you have to

wait for 𝑊𝐹𝑀𝐶 and you have to go through and most importantly you have to actually think

about this state where we depend on the output of the flag registers. So, that is what has been

discussed over here.

652

(Refer Slide Time: 43:57)

That, if the zero flag is set which is one of the inputs what happen; and if the zero flag is not

set you directly go to 𝐸𝑁𝐷.

So, with this we come to the end of this unit and just have a little look at some of the sample

questions like for example.

(Refer Slide Time: 44:14)

We say the first question is draw the basic block diagram for a hardwired controlled units of a

CPU and explain its functionality the theoretical question if you are able to answer this question

you should be able to do it; because we have both discussed using examples as well as theory

653

of how a hardwired control unit work if you are able to solve the question you will be are

basically within the objectives of associating control signals by looking at the control steps and

basically the design and design issues and implementation of a control unit.

So, mainly this actually focuses on this one and also slightly on this in objective, because you

have to also know what control signals are depending on what, but mainly if you were able to

explain the whole control unit in terms of block diagram you are able to synthesize the idea of

how to design a control unit.

Then by different examples like 𝐿𝑂𝐴𝐷 𝑅1, 𝑀; 𝑆𝑇𝑂𝑅𝐸 𝑅1, 𝑀; 𝐴𝐷𝐷 𝑅1, 𝑀 different types of

macro instructions are there then I ask you to design a hardwired based controller out of it. So,

by if you are able to solve this question of course, you are actually meeting both the objectives

because the second objective is the design objective where you are asked to design a micro

controller oh, sorry; I mean say finite state machine based controller for a given set of macro

instructions and of course, the you have to also have a good analysis idea, because you have to

associate different control signals with different micro instruction steps.

So, if you are able to solve this your job is done. So, with this we come to the end of this unit

from next unit on words basically; we will try to have a look at slightly more integrated details

like what happens if you have multiple buses? How things you are going to change? How many

less number of steps are there? How the finite state machine synthesis will change? So, we will

be having a look at multiple bus architecture may be a 2 bus or a 3 bus architecture and also

we have to look in details about your very importantly your micro program based control

because you have seen that in FSM based control it is very fast, but everything is hardcoded

and non-flexible.

So, we want to give more flexibility to it because you can see that many of the instructions

have several parts has common. So, if we want to give some commonality and some flexibility

we will go for micro program based design and then also in the end we will see how all the

things get changed if you have a multiple bus architecture we just give an idea of it.

Thank you.

654

